Direct folding simulation of helical proteins using an effective polarizable bond force field.

نویسندگان

  • Lili Duan
  • Tong Zhu
  • Changge Ji
  • Qinggang Zhang
  • John Z H Zhang
چکیده

We report a direct folding study of seven helical proteins (, Trpcage, , C34, N36, , ) ranging from 17 to 53 amino acids through standard molecular dynamics simulations using a recently developed polarizable force field-Effective Polarizable Bond (EPB) method. The backbone RMSDs, radius of gyrations, native contacts and native helix content are in good agreement with the experimental results. Cluster analysis has also verified that these folded structures with the highest population are in good agreement with their corresponding native structures for these proteins. In addition, the free energy landscape of seven proteins in the two dimensional space comprised of RMSD and radius of gyration proved that these folded structures are indeed of the lowest energy conformations. However, when the corresponding simulations were performed using the standard (nonpolarizable) AMBER force fields, no stable folded structures were observed for these proteins. Comparison of the simulation results based on a polarizable EPB force field and a nonpolarizable AMBER force field clearly demonstrates the importance of polarization in the folding of stable helical structures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an effective polarizable bond method for biomolecular simulation.

An effective polarizable bond (EPB) model has been developed for computer simulation of proteins. In this partial polarizable approach, all polar groups of amino acids are treated as polarizable, and the relevant polarizable parameters were determined by fitting to quantum calculated electrostatic properties of these polar groups. Extensive numerical tests on a diverse set of proteins (includin...

متن کامل

Induction of peptide bond dipoles drives cooperative helix formation in the (AAQAA)3 peptide.

Cooperativity is a central feature in the formation of secondary structures in proteins. However, the driving forces behind this cooperativity are poorly understood. The present work shows that the cooperativity of helix formation in the acetyl-(AAQAA)3-NH2 peptide is significantly enhanced using an empirical force field that explicitly includes the treatment of electronic polarizability. Polar...

متن کامل

Computational Study of PCSK9-EGFA Complex with Effective Polarizable Bond Force Field

Inhibiting of Proprotein Convertase Subtilisin/Kexin-type 9 (PCSK9) and Low Density Lipoprotein Receptor (LDLR) binding is an effective way for reducing Low Density Lipoprotein cholesterol (LDL-C). Understanding the interaction between PCSK9 and LDLR is useful for PCSK9 inhibitor design. In this work, MD simulations with the standard (non-polarizable) AMBER force field and effective polarizable...

متن کامل

Treatment of Hydrogen Bonds in Protein Simulations

The hydrogen bond plays an essential role in maintaining the secondary structures of protein, and an accurate description of hydrogen bond interaction is critical in protein folding simulation. Modern classical force fields treat hydrogen bonding as nonbond‐ ed interaction, which is dominated by electrostatic interaction. However, in the widely used nonpolarizable force fields, atomic charges a...

متن کامل

Induced Dipole–Dipole Interactions Influence the Unfolding Pathways of Wild-Type and Mutant Amyloid β-Peptides

Amyloid-forming proteins undergo a structural transition from α-helical to disordered conformations and, ultimately, cross-β fibrils. The unfolding and aggregation of the amyloid β-peptide (Aβ) have been implicated in the development and progression of Alzheimer's disease (AD) and cerebral amyloid angiopathy (CAA). However, the events underlying the initial structural transition leading to the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 19 23  شماره 

صفحات  -

تاریخ انتشار 2017